a2 United States Patent

US009438414B2

(10) Patent No.: US 9,438,414 B2

Wu 45) Date of Patent: Sep. 6, 2016
(54) VIRTUALIZED SHA COMPUTATIONAL 2004/0205336 Al* 10/2004 Kessler et al. 713/160
ENGINE 2008/0065885 Al* 3/2008 Nagai et al. ..cocccococ.... 713/168
2008/0130895 Al* 6/2008 Jueneman HO4L 9/3066
— . . 380/277
(71) Applicant: Advanced Micro Devices, Inc., 2012/0060159 Al* 3/2012 Sydir et al. ooooovvvvveeenee.. 718/100
Sunnyvale, CA (US) 2014/0093069 Al* 4/2014 Wolrich et al. . 380/28
(72) Inventor: Winthrop J Wu, Shrewsbury, MA (US) OTHER PUBLICATIONS
(73) Assignee: Advanced Micro Devices, Inc., FIPS, PUB. “180-3.” Secure Hash Standard (SHS) (2008).
Sunnyvale, CA (US)
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Y
patent is extended or adjusted under 35
US.C. 154(b) by 201 days. Primary Examiner — Lisa Lewis
(21) Appl No.: 14/058.102 Assistant Examiner — Henry Tsang
. No.: X
(74) Attorney, Agent, or Firm — Liang & Cheng, PC
(22) Filed: Oct. 18, 2013
(65) Prior Publication Data (57) ABSTRACT
US 2015/0110264 Al Apr. 23, 2015 A computational engine may comprise a working memory
(51) Int.Cl configured to receive a first input message and a second
H0;I I 9 06 (2006.01) input message, a context memory coupled with the working
(52) US.Cl ’ memory, wherein the context memory is configured to
CPC) HO4L 9/0643 (2013.01); HOAL 2209/12 simultaneously store a first context corresponding to the first
""""" e (2013.01) input message and a second context corresponding to the
(58) Field of Classification Search second input message, and a set of computational elements
None coupled with the working memory and coupled with the
See application file for complete search history. context memory, wherein the set of computational elements
is configured to finish generating a first output digest based
(56) References Cited on the first input message and a first context after starting

2002/0108048 Al*

2002/0199101 Al* 12/2002 Krishna

U.S. PATENT DOCUMENTS

8/2002 Qi

HO4L 9/0625
713/189
GOG6F 9/3879
713/161

—

reccive data packet

generation of a second output digest based the second input
message and a second context and before finishing the
generation of the second output digest.

20 Claims, 7 Drawing Sheets

Y% computation
600

solect context

selcot computational

vy

initialize context
507

|

cryptographic operetions

xcouts soquence of

N measage?

/T“:‘\,ﬂ

store intermediate value

in context

=

cutput data packet
615

U.S. Patent Sep. 6, 2016 Sheet 1 of 7 US 9,438,414 B2

computer

System
r/_ 100

processor unit | interconnect 112 | coprocessor unit
Il) 0 u3a

Coprocessor unit
113B

A 4

mcmory controller
114 processor

subsystem
110

memory
120

FIGURE 1

U.S. Patent Sep. 6, 2016 Sheet 2 of 7 US 9,438,414 B2

workload
i architecture
201 200
interface i DMA |
202 203
Johblpnhetm l job packet
switchable 204 4 manager
interconnect e] E / 205
206 —
\\ T]

L
eS8 e

FIGURE 2

U.S. Patent Sep. 6, 2016 Sheet 3 of 7

SHA-2247256 |]

316

[—

carry-select
adders
312

FIGURE 3A

US 9,438,414 B2

computational
engine
210-2

<SM-224/’256

carry-save adders

311

U.S. Patent Sep. 6, 2016 Sheet 4 of 7 US 9,438,414 B2

initial hash word (H,") command queue 1D
306 353

to path
[selection
logic

context memory register Hx
307

—> context data 350(1) —>\\

—> context data 350(2) >

input Y
307a

output
307b

Y
)
L
—
|8
L
]

\—) context data 350(x) =

N

FIGURE 3B

U.S. Patent Sep. 6, 2016 Sheet 5 of 7 US 9,438,414 B2

computational
engine
210-2

(SHA-1 mode)

316

<Sm-224/’256

[—

CSA—(CSA

carry-save adders
311

FIGURE 4

U.S. Patent

Sep. 6, 2016

Sheet 6 of 7

addcrs
312

316

=

L

SHA-224/256

318

FIGURE 5

US 9,438,414 B2

computational engine
210-2
(SHA-224/256 mode)

(/SM-224/256

carry-save adders
311

U.S. Patent Sep. 6, 2016 Sheet 7 of 7 US 9,438,414 B2

I,..—oompu‘mﬁon

end of store intermediate value
message? in context

FIGURE 6

US 9,438,414 B2

1
VIRTUALIZED SHA COMPUTATIONAL
ENGINE

TECHNICAL FIELD

This disclosure relates to the field of encryption and, in
particular, to a computational engine for performing cryp-
tographic operations.

BACKGROUND

In addition to a central processing unit (CPU), a computer
system may in some cases utilize a coprocessor for perform-
ing additional functions. For example, a coprocessor may be
used to perform such operations as floating point arithmetic,
graphics operations, signal processing, string processing,
encryption, compression, and interfacing with peripheral
devices. Coprocessors may thus be optimized for perform-
ing specific types of calculations efficiently, and may
increase overall system performance by offloading proces-
sor-intensive tasks from the CPU.

A coprocessor may be used to process a heterogeneous
workload that may include several different types of com-
putations, each having its own unique set of computational
requirements, such as data size or processing time. A typical
architecture may execute such heterogeneous workloads by
relying on software management to execute multiple work-
loads sequentially using a single or multiple hardware
engines. However, the different computational requirements
presented by a heterogeneous workload may make it difficult
to execute using such a system; different computational
(data) sizes or computational time may add significant
complexity as compared to homogeneous workloads.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings.

FIG. 1 illustrates an embodiment of a computer system.

FIG. 2 illustrates an embodiment of a workload manage-
ment architecture.

FIG. 3A illustrates an embodiment of a computational
engine, according to an embodiment.

FIG. 3B illustrates an embodiment of a context memory
register, according to an embodiment.

FIG. 4 illustrates a computational pathway for implement-
ing a SHA-1 hash function in a computational engine,
according to an embodiment.

FIG. 5 illustrates a computational pathway for implement-
ing a SHA 224/256 hash function in a computational engine,
according to an embodiment.

FIG. 6 is a flow diagram illustrating an embodiment of a
computation process.

DETAILED DESCRIPTION

The following description sets forth numerous specific
details such as examples of specific systems, components,
methods, and so forth, in order to provide a good under-
standing of the embodiments. It will be apparent to one
skilled in the art, however, that at least some embodiments
may be practiced without these specific details. In other
instances, well-known components or methods are not
described in detail or are presented in a simple block
diagram format in order to avoid unnecessarily obscuring
the embodiments. Thus, the specific details set forth are

10

15

20

25

30

35

40

45

50

55

60

65

2

merely exemplary. Particular implementations may vary
from these exemplary details and still be contemplated to be
within the spirit and scope of the embodiments.

One embodiment of an architecture for managing a het-
erogeneous workload that presents multiple data streams for
computation may allow such multiple data streams to be
processed concurrently without external supervision by a
processor or host system. Specifically, the data streams may
be processed by functions executing concurrently on mul-
tiple hardware engines. In one embodiment, the hardware
engines may be fixed-function engines (FFEs) that are
optimized for performing specific functions or sets of cal-
culations.

In one embodiment, a FFE may be a computational engine
that is capable of switching between different modes of a
certain type of task; for example a Secure Hash Algorithm
(SHA) engine may be capable of switching between mul-
tiple SHA hash functions, such as SHA-1, SHA-224, SHA-
256, and HMAC, for example. In one embodiment, a
computational engine may include a set of computational
elements for which at least some of the computational
elements are used to implement more than one of the
multiple hash functions.

In one embodiment, a computational engine may generate
an output digest from an input message by performing a
sequence of SHA cryptographic operations on the input
message data. In one embodiment, these cryptographic
operations may be performed as a series of computations
upon 64-byte data segments of the input message, where an
intermediate value calculated based on one data segment
may be used to calculate a result for a successive data
segment. An embodiment of a computational engine may
thus include an internal context memory that can be updated
and maintained between successive data segments, allowing
the computational engine to switch between the processing
of different input messages. For example, the computational
engine may store in the context memory an intermediate
value generated based on a first data segment of a first
message, switch to processing a data segment of a second
message, then restore the previously stored intermediate
value when resuming processing of the next data segment of
the first message.

In one embodiment, the computational engine may
include a set of computational elements, such as adders,
registers, multiplexers, or other components each configured
to execute one or more cryptographic operations in a
sequence of operations for implementing a cryptographic
hash function. Such a computational engine may support
multiple hash functions by selecting, for each of the sup-
ported hash functions, a different computational pathway
through a subset of the computational elements.

FIG. 1 illustrates an embodiment of a computer system
100 which may implement a workload management archi-
tecture with one or more computational engines, as
described above. Computer system 100 may include a
processor subsystem 110 coupled with memory 120. Com-
puter system 100 may be any of various types of devices,
including, but not limited to, a personal computer system,
desktop computer, laptop or notebook computer, mainframe
computer system, handheld computer, workstation, network
computer, a consumer device such as a mobile phone, pager,
or personal data assistant (PDA). Computer system 100 may
also be any type of networked peripheral device such as
storage devices, switches, modems, routers, etc. Although a
single computer system 100 is shown in FIG. 1 for conve-
nience, system 100 may also be implemented as two or more
computer systems operating together.

US 9,438,414 B2

3

In one embodiment, processor subsystem 110 may
include one or more processors or processing units. For
example, processor subsystem 110 may include one or more
processor units, such as processor unit 111, that are coupled
to one or more coprocessor units (e.g., coprocessor units
113A and 113B). In various embodiments, processor sub-
system 110 (or each processor unit within 110) may contain
a cache or other form of on-board memory.

Memory 120 is coupled with processor subsystem 110
and is usable by processor subsystem 110. Memory 120 may
be implemented using different physical memory media,
such as hard disk storage, floppy disk storage, removable
disk storage, flash memory, random access memory (RAM-
SRAM, EDO RAM, SDRAM, DDR SDRAM, etc.), read-
only memory (PROM, EEPROM, etc.), and so on. In one
embodiment, the available memory in computer system 100
is not limited to memory 120. Rather, computer system 100
may be said to have a “memory subsystem” that includes
various types/locations of memory. For example, the
memory subsystem of computer system 100 may, in one
embodiment, include memory 120, cache memory in pro-
cessor subsystem 110, and storage on various I/O devices
(e.g., a hard drive, storage array, etc.). Thus, the phrase
“memory subsystem” may represent various types of pos-
sible memory media that can be accessed by computer
system 100. In some embodiments, the memory subsystem
stores program instructions executable by processor subsys-
tem 110.

Processor subsystem 110 includes a processor unit 111,
coprocessor units 113A and 113B, and a memory controller
114, all coupled together via an interconnect 112 (e.g., a
point-to-point or shared bus circuit). In one embodiment,
processor unit 111 and coprocessor units 113A and 113B
may be located on the same die. In an alternative embodi-
ment, processor unit 111 and coprocessor units 113A and
113B may be located on separate dies. In one embodiment,
coprocessor unit 113B and memory controller 114 may be
omitted from the processor subsystem 110. For example,
processor unit 111 may be coupled only to a single copro-
cessor unit (e.g., 113A); alternatively, processor unit 111
may be coupled to multiple coprocessor units (e.g., 113A
and 113B). Additional coprocessor units may be possible in
other embodiments. In various embodiments, processor unit
111 and coprocessor units 113A and 113B may share a
common memory controller 114. Memory controller 114
may be configured, for example, to access a main system
memory (e.g., memory 120). In other embodiments, each
processor unit 111 and coprocessor units 113A and 113B
may be coupled to respective memory controllers.

In one embodiment, processor unit 111 is a general-
purpose processor unit (e.g., a central processing unit
(CPU)) that may include one or more execution units.
Alternatively, unit 111 may be a special-purpose processor
such as a graphics processor. In one embodiment, processor
unit 111 may be configured to execute instructions fetched
from memory 120 using memory controller 114. The archi-
tecture of unit 111 may have various features; for example,
it may be pipelined. In other embodiments, processor unit
111 may implement a multithreaded architecture for simul-
taneously executing multiple threads. Processor unit 111
may execute, without limitation, application-specific
instructions as well as operating system instructions. These
instructions may allow the implementation of any number of
features, including, as just one example, virtual memory.

In one embodiment, processor unit 111 maybe coupled as
a companion processor to one or more COprocessor units
113 A and 113B, permitting unit 111 to provide instructions

20

30

40

45

55

4

to coprocessor units 113A and 113B. Instructions provided
by processor unit 111 to coprocessor units 113A and 113B
may be within a common instruction stream (i.e., unit 111
fetches instructions to execute and provides certain of those
fetched instructions to unit 113A and 113B for execution).
Certain instructions provided from processor unit 111 to
coprocessor unit(s) 113A and 113B may be “control”
instructions generated by a functional unit within processor
unit 111 to control the operation of coprocessor unit(s) 113A
and 113B.

In one embodiment, coprocessor units 113A and 113B
may be used to help perform the work of processor unit 111.
As with processor unit 111, coprocessor units 113A and
113B are not limited to any particular function or architec-
ture. In various embodiments, coprocessor units 113A and
113B may be general-purpose or special-purpose processors
(e.g, graphics processor units (GPU), video decoding pro-
cessors, encryption processors, queue managers, etc.). In
one embodiment, coprocessor units 113A and 113B may be
implemented as a field-programmable gate array (FPGA). In
some embodiments, coprocessor units 113A and 113B may
be pipelined. Coprocessor units 113A and 113B may, in
some embodiments, employ a multithreaded architecture. In
various embodiments, coprocessor units 113A and 113B
may be configured to execute microcode instructions in
order to perform certain instructions received from unit 111.
In certain embodiments, coprocessor units 113A and 113B
may support the use of virtual memory.

In one embodiment, interconnect 112 may be a shared bus
circuit that couples processor unit 111 to coprocessor units
113A and 113B. In one embodiment, interconnect 112 may
implement a “virtual tunnel” that allows processor unit 111
to communicate with coprocessor units 113A and 113B via
a packet-based protocol such as Hyper Transport or PCI-
Express. In some embodiments, interconnect 112 may be a
front-side bus. In one embodiment, coprocessor units 113A
and 113B may be coupled to processor unit 111 through a
Northbridge-type device.

In one embodiment, memory controller 114 is configured
to provide an interface for processor unit 111 and/or copro-
cessor units 113A and 113B to access memory (e.g., memory
120). Memory controller 114 may be used, for example, to
fetch instructions or to load and store data. In one embodi-
ment, processor unit 111 may use memory controller 114 to
fetch instructions for execution in processor unit 111 or
coprocessor units 113A and 113B. In another embodiment,
a coprocessor unit 113 A or 113B may use memory controller
114 to fetch its own instructions or data.

FIG. 2 illustrates a workload management architecture
200, according to an embodiment, which may be imple-
mented in a coprocessor such as coprocessor unit 113A or
113B, and which may include one or more computational
engines, such as fixed function engines (FFEs) 210-1 to
210-N. In alternative embodiments, the workload manage-
ment architecture 200 is not limited to coprocessor imple-
mentations, and may be implemented in other types of
processors or devices; for example, the architecture 200 may
be implemented in a processor unit such as processor unit
111 in a processor subsystem 110 that may or may not
include coprocessor units 113A and 113B. In one embodi-
ment, the workload management architecture may be imple-
mented in a single block of a single integrated circuit chip.

In one embodiment, the architecture 200 may include a set
of command queues 201, which are coupled with an input of
a direct memory access (DMA) block 203. In one embodi-
ment, the DMA block 203 may be further coupled with a
number of job packet buffers 204, which are in turn coupled

US 9,438,414 B2

5

with a job packet manager 205. The job packet manager 205
may be coupled with each of a set of N fixed-function
engines (FFEs) 210-1 to 210-N. Each of the FFEs may have
an output connected to a corresponding output packet buffer
207. Each of the output packet buffers 207 is connected via
a switch 208 to the DMA block 203. In one embodiment, the
components of workload management architecture 200 may
be constructed on the same semiconductor substrate. For
example, the components, including the DMA block 203,
the job packet manager 205, the FFEs 210, and other
components may be constructed as part of a coprocessor on
a single semiconductor chip.

In one embodiment, each of the command queues 201 is
a data structure (such as a linked list, stack, table, etc.) or
other memory that can be used to contain control informa-
tion and data associated with one or more commands in a
single workload. In one embodiment, a workload may reside
in one and only one of the command queues 201 at a given
time. Thus, with n command queues 201, the architecture
200 may support n simultaneous workloads. Each of the n
workloads may be heterogeneous, homogeneous, or a com-
bination of both heterogeneous and homogeneous work-
loads. In one embodiment, the command queues 201 may be
implemented as first-in-first-out (FIFO) buffers.

In one embodiment, the DMA block 203 performs the
fragmentation of the workload data into a stream of job
packets and reassembling the resulting output stream in
memory (via memory interface 202) after the job packets
have been processed. In one embodiment, the command
queues 201 may be coupled to the DMA block 203 such that
the DMA block 203 can receive the workload data and
control information from the command queues 201. The
DMA block 203 may be configured to, in response to
receiving the workload commands and workload data from
the command queues 201, divide the workload data for each
of the received commands into a number of job packets. In
order to create a stream of job packets for a workload, the
DMA may fetch and segment the input workload data,
retrieve the control information for the workload, and com-
bine these together into a job packet according to the
specifications of specified FFEs which are to be used for
processing the job packets.

In one embodiment, each of the commands in the work-
load may be associated with a particular FFE; for example,
the command may indicate an FFE to be used for processing
the workload data associated with the command. In one
embodiment, the DMA block 203 may identify the particular
FFE associated with the command based on control infor-
mation, workload data, or some other indication. In response
to identifying the FFE that is to process the data associated
with the command, the DMA block 203 may then determine
how to arrange the workload data and control information
into a job packet according to a format that can be processed
by the FFE.

For example, a job packet destined for an FFE that is
configured to perform AES encryption may include a set of
input data, an AES key, and a flag indicating whether
encryption or decryption is to be performed by the FFE. The
DMA block 203 may also add metadata to the job packet; for
example, the job packet may include a header containing
flags indicating whether the job packet is the first or last job
packet of a command, or containing fields indicating the
length of the data payload of the job packet.

In one embodiment, the DMA block 203 may also add a
command queue identification (ID) tag to each job packet of
a command identifying the command or the command queue

10

15

20

25

30

35

40

45

50

55

60

65

6

from which the job packet originated. Such tagging may
facilitate the processing of workstreams that include mul-
tiple commands.

In one embodiment, the DMA block 203 generates a
series of job packets and stores the job packets in one or
more job packet buffers 204. In one embodiment, the buffers
204 may be implemented using FIFO buffers.

In one embodiment, the workload management architec-
ture 200 may also include a job packet manager 205 coupled
with the job packet buffers 204. The job packet manager 205
may be configured to assign one or more of the job packets
produced by the DMA block 203 and stored in the buffers
204 to one of the FFEs 210. Based on the assignment, the job
packet manager 205 may retrieve job packets from the
buffers 204 and transmit the job packets to the appropriate
one of the FFEs 210 that is coupled with the job packet
manager 205.

In one embodiment, the job packet manager 205 may
transfer job packets via a switchable interconnect 206 that is
coupled with the DMA block 203 directly or through buffers
204. The switchable interconnect 206 may thus couple the
DMA block 203 to each of the FFEs 210, so that the job
packets produced by the DMA block 203 can be distributed
to the different FFEs 210. In one embodiment, the switch-
able interconnect 206 may be implemented as a cross-bar
network.

In one embodiment, when one of the FFEs 210 has
available space to accept a new job packet, the job packet
manager 205 may arbitrate between the job packets queued
in the buffers 204 to identify a job packet to send to the FFE.
In one embodiment, priorities may be assigned to the
commands in the workstream, the command queues, or to
specific job packets to control the allocation of the FFEs’
computational bandwidth when conflicts arise.

In one embodiment, when one of the command queues
201 has run out of data (underflowed) then the command
queue may stall until more data has been stored in the
command queue, and a job packet created from that data.
The DMA block 203 may ignore the underflowed command
queue and only arbitrate between command queues that have
work packets ready to queue. In one embodiment, allocation
of'the FFEs’ computational bandwidth may be performed on
an arbitration cycle basis and may be based upon the
priorities of just the command queues having job packets
ready to be distributed to the FFEs 210.

Accordingly, each of the FFEs 210 may be configured to
receive one or more of the job packets and generate one or
more output packets based on the workload data in the
received one or more job packets. For example, a FFE may
receive a job packet, then perform a function on the work-
load data in the packet, in accord with control information
or function parameters also contained within the job packet.
The FFE may then generate an output packet containing the
output data resulting from performing the function. In one
embodiment, an FFE may generate one output packet for
each job packet that is processed by the FFE.

In one embodiment, each of the FFEs 210 may include an
input FIFO buffer for queuing job packets that have been
assigned to the corresponding FFE. Thus, each input FIFO
buffer queues job packets for a different one of the FFEs 210.
In order to process a job packet, an FFE may receive the job
packet in its input FIFO buffer, and may then process the job
packet after processing any preceding job packets in the
input FIFO buffer. In one embodiment, each FFE processes
a single job packet at a time; however, the multiple FFEs 210
may process job packets in parallel.

US 9,438,414 B2

7

In one embodiment, each of the FFEs 210 may include an
arrangement of logic gates, memory cells, and/or other
devices arranged to perform a specific calculation or func-
tion using the input data and other information in the job
packets. Alternatively, the functions of the FFEs 210 may be
implemented using software or firmware that is executed
using a processor.

In one embodiment, each of the FFEs 210 may be
configured to perform a different set of calculations from any
of the other FFEs. For example, a first FFE 210-1 may
perform a first set of calculations for AES encryption while
a second FFE 210-2 performs a different set of calculations
to implement SHA encryption. Alternatively, some of the
FFEs 210 may be redundant, such that two or more of the
FFEs 210 perform the same or similar function, or perform
the same or similar sets of calculations.

In one embodiment, the time durations taken by each of
the FFEs 210 to finish processing a job packet may vary. For
example, FFE 210-1 may take less time to process a job
packet than FFE 210-2.

In one embodiment, when processing job packets, each
FFE may identify ordering information in the job packets
and copy the ordering information into the corresponding
output packets generated by the FFE. In one embodiment,
the ordering information indicates the original order of the
job packets, and further indicates an order in which the
output data in the output packets is to be arranged when
assembling the output data stream.

In one embodiment where the DMA block 203 has added
to each job packet a command queue ID tag identifying the
command queue from which the job packet originated, each
FFE may be further configured to copy the tag from the job
packet to its corresponding output packet. In one embodi-
ment, the FFE copies the tag into the output packet when the
FFE queues the output packet in one of the output packet
buffers 207.

In one embodiment, each of the FFEs 210 may be coupled
with one of a set of output packet buffers 207. Each of the
output packet buffers 207 may be configured to receive the
output packets generated by the FFEs 210 and queue the
output packets prior to assembly into an output data stream.
In one embodiment, the switch 208 may be used to selec-
tively couple one of the output packet buffers 207 to the
DMA block 203 so that the DMA block 203 can retrieve one
or more output packets from the selected output packet
buffer.

In one embodiment, the DMA block 203 may assemble
the output data from the received output packets into an
output data stream. In one embodiment, the DMA block 203
uses the command queue ID tag to identify output packets
belonging to a particular command queue and to combine
those packets together into an output buffer for the specified
command queue.

The output packets may be assembled in an order indi-
cated by the ordering information in one or more of the
output packets. In one embodiment, the output data stream
may include the payload data from the output data packets
while excluding some or all of the metadata contained in the
output data packets. In one embodiment, the output data
stream may be stored in memory by the DMA via memory
interface 202. For example, the output data may be stored in
memory 120, illustrated in FIG. 1.

In one embodiment, a fixed function engine (FFE) may be
a computational engine 210-2 as illustrated in FIG. 3A. In
one embodiment, the computational engine 210-2 may be
coupled with the job packet manager 205 of the workload
management architecture 200, as illustrated in FIG. 2. The

10

15

20

25

30

35

40

45

50

55

60

65

8

job packet manager 205 may distribute job packets to the
computational engine 210-2, where the job packets may
carry data from various commands from the different com-
mand queues 201. For example, the job packet manage 205
may transmit to the computational engine 210-2 a first job
packet including data for executing a first command that is
associated with a first command queue, and may subse-
quently transmit to the same computational engine 210-2 a
second job packet including data for executing a second
command that is associated with a second command queue.

In one embodiment, in addition to the payload data on
which the computation is to be performed, the job packet
may also include metadata that may indicate, for example,
the command queue from which the job packet originated or
a sequence in which the output data generated from the job
packet is to be reassembled.

In one embodiment, the division of commands into job
packets that can be processed individually allows a single
computational engine 210-2 to begin processing data for a
first command, then begin processing data for a second
command before completing the first command. Accord-
ingly, the computational engine may finish processing data
for a first command after starting to process data for a second
command and before completing the second command. In
an embodiment where the computational engine 210-2 per-
forms a hash function, the processing of data may corre-
spond to the generation of an output digest based on input
message data.

In one embodiment, the computational engine 210-2 may
include a working memory. As illustrated in FIG. 3A, the
working memory includes a set of working registers A-H for
storing a set of working variables. In one embodiment, data
from the input message to be encoded using a sequence of
SHA cryptographic operations may be received as payload
data in a set of job packets; this input data may be received
and stored in the working memory. In one embodiment, the
contents of the working memory may also be updated during
the execution of the cryptographic operations by the com-
putational engine 210-2.

In one embodiment, execution of a cryptographic hash
function such as a SHA function may include repeated
iterations of a particular sequence of cryptographic opera-
tions, which may operate on the contents of the working
memory. In such an embodiment, the sequence of crypto-
graphic operations may update the values stored in the
working memory for each iteration. In other words, the
sequence of cryptographic operations may, based on the data
in the working memory, generate a new intermediate value
that is written back into the working memory.

In one embodiment, the computational engine 210-2 may,
over the course of multiple iterations, generate an output
packet for each job packet received. The payload data in the
output packet may be generated based on the input data
stored in the working memory, including registers A-H, and
based on the data stored in the context memory, which
includes registers HO-H7. In one embodiment, the context
memory HO-H7 may include a context corresponding to
each command queue from which the engine 210-2 may
receive a job packet. In one embodiment, each context
includes an entry for each of the context registers HO-H7.

In one embodiment, the sequence of cryptographic opera-
tions may also operate on data stored in a context. Main-
taining multiple contexts allows the computational engine
210-2 to switch between executing multiple commands
specifying different functions or modes. For example, the
computational engine 210-2 may support a number of dif-
ferent SHA hash functions, and may be capable of switching

US 9,438,414 B2

9

back and forth between a first command requesting execu-
tion of a first hash function and a second command request-
ing execution of a second hash function. For example, the
engine 210-2 may switch back and forth between processing
a first input message according to a SHA-1 hash function
and a second input message according to a SHA-224 hash
function. In one embodiment, maintaining multiple contexts
also allows the computational engine 210-2 to switch
between different commands specitying the same hash func-
tion. For example, the engine 210-2 may switch back and
forth between processing a first input message according to
a SHA hash function and a second input message according
to the same SHA hash function.

In one embodiment, each command may individually
specify a hash function to be used for processing the data
associated with the command. For example, a command
may specify that a particular input message associated with
the command is to be processed using a SHA-1 hash
function; thus, the set of job packets for the command may
include metadata directing the computational engine 210-2
to use the SHA-1 mode to process the input message. In an
alternative embodiment, the hash function to be used may be
indicated elsewhere; for example, the computational engine
210-2 may determine the mode based on the command
queue identifier of the input job packets, or based on the
command.

FIG. 3B illustrates an embodiment of a context memory
register 307 of a computational engine 210-2. In one
embodiment, the context memory register 307 Hk may
correspond to one of the context registers HO-H7, where k
is one of the index numbers 0-7. As illustrated in FIG. 3B,
the context memory register 307 stores context data seg-
ments 350(1)-350(»), each of which represents a portion of
the entire context. Each of the context data segments 350
(1)-350(») may correspond to one of n command queues,
such as command queues 201. Each of these contexts may
store, for example, one or more intermediate hash values or
final hash values generated by the execution of a sequence
of cryptographic operations on workload data from the
corresponding command queue. In one embodiment, an
intermediate hash value may be a value generated by an
iteration of a sequence of cryptographic operations for
processing a block of data using one of the supported SHA
hash functions.

In one embodiment, the context memory register 307 may
include context selection logic including demultiplexer 351
and multiplexer 352 for selecting a current context data
segment out of the context data segments 350 based on the
command queue identifier of the current job packet. In one
embodiment, each of the context data segments 350 is a
word of an intermediate hash value. In one embodiment, the
context selection logic 351 and 352 may select a different
context for each unique command queue. In one embodi-
ment, the selection may be maintained for the duration of
execution of the sequence of cryptographic operations on the
current job packet. In one embodiment, the selection logic
351 and 352 may maintain the selection for at least the time
during which the context memory 307 is being accessed.

Some SHA functions may use an initial hash value when
beginning processing of a new input message. Thus, in one
embodiment, an initial hash word H,» 306 of the initial hash
value may be connected to the input 3074 of the context
memory; different initial hash words may be stored in one or
more of the context data segments 350. The initial values
Hgye-H,o make up an initial hash value. In one embodiment,
the initial hash value, including hash word H,» 306, may be
used to introduce initial “nothing up my sleeve numbers” for

20

25

40

45

50

55

10
starting a SHA process. As illustrated in FIG. 3A, the each
of the initial hash words H,o-H.o may be stored in one of the
respective context registers HO-H7 via a multiplexer.

In one embodiment, the context selection logic 351 and
352 may select a current context by coupling the appropriate
context data segment 350 with an input 307« and an output
3075, respectively, of the context memory register 307. In
one embodiment, the context selection logic 351 and 352
may select a current context in response to receiving a
command queue ID 353 of a packet currently being pro-
cessed by the computational engine 201-2 at the time of the
selection, and may select a context corresponding to the
received command queue 1D 353.

In one embodiment, the working memory may be coupled
with the context memory so that data can be copied from the
working memory to the context memory, or from the context
memory to the working memory. In one embodiment, the
computational engine 210-2 may, when switching jobs, copy
data for the current job from the working memory to the
context memory. In one embodiment, the computational
engine 210-2 may switch jobs in response to receiving a job
packet for a different command than the previously pro-
cessed job packet.

In one embodiment, the command queue ID 353 may
additionally be processed by logic 354 and used to control
computational elements having path selection logic to select
a computational pathway for implementing the appropriate
hash function for the packet being processed. In one embodi-
ment, the logic 354 may include memory and other logic for
correlating the received command queue ID 353 with the
appropriate hash function mode, and for generating the
signals to switch the path selection logic elements accord-
ingly.

In one embodiment, a computational engine 210-2 imple-
menting a hash function such as a SHA hash function may
generate an intermediate hash value for each iteration of a
sequence of cryptographic operations, then use the gener-
ated intermediate hash value in a subsequent iteration of the
sequence of cryptographic operations. In one embodiment,
these intermediate hash values may thus be stored in a
context so they can be retrieved when they are to be used for
performing the subsequent iteration.

In one embodiment, the context memory of computational
engine 210-2 may thus simultaneously store multiple inter-
mediate hash values corresponding to multiple ongoing hash
function computations. For example, a context memory may
store a first context including an intermediate hash value to
be used for calculating an output digest for a first input
message, while simultaneously storing a second context
including another intermediate hash value to be used for
calculating an output digest for a second input message.

In one embodiment, the contexts stored in the context
memory may be accessible to processes external to the
computational engine 210-2. In one embodiment, such an
external process may be software capable of saving and
restoring individual contexts. In one embodiment, such
software may be used to further increase the number of
commands that may be simultaneously pending by allowing
multiple commands or multiple command queues to use a
single context.

With reference back to FIG. 3 A, the computational engine
210-2 may further include a set of computational elements
coupled with the working memory, including working reg-
isters A-H, and coupled with the context memory, including
context registers HO-H7. In one embodiment, each of the
computational elements may be coupled with at least
another computational element in the set of computational

US 9,438,414 B2

11

elements. In one embodiment, each of the computational
elements in the set of computational elements is configured
to execute one or more cryptographic operations for imple-
menting one or more of the supported hash functions of the
computational engine 210-2. As illustrated in FIG. 3A, the
set of computational elements may include elements such as
carry-save adders (CSA) 311, carry-select adders 312, and
multiplexers 313, 314, 315, 316, 317, and 318 among others.

In one embodiment, some of the computational elements
may be function blocks that are configured to perform one
or more cryptographic operations. For example, the Ch
function block may perform the function Ch(x, y, z) and the
Maj function block may perform the function Maj(x, y, z),
as described in the Federal Information Processing Stan-
dards Publication (FIPS, PUB) “180-3” Secure Hash Stan-
dard (SHS) (2008). The set of computational elements may
also include 2, and Z function blocks, and a o,,2ss function
blocks. Other computational elements may perform various
cryptographic operations used by one or more of the SHA
hash functions; for example, the RL5 block may perform a
left bit rotation by 5 bits, the RL.30 block may perform a left
bit rotation by 30 bits, the XOR block may perform an
exclusive OR operation, and the function block fl may
perform a nonlinear function that varies. The set of compu-
tational elements may also include blocks that provide
values, such as the K constant block and the W message
schedule block.

In one embodiment, the set of computational elements
may be configurable to implement any of a number of
supported hash functions for generating an output digest
from an input message. In one embodiment, some of the
computational elements may include path selection logic,
which may be used to select a computational pathway for
implementing a particular supported hash function. For
example, the computational elements 313, 314, 315, 316,
317, and 318 are multiplexers that may be used to selectively
connect together a particular subset of computational ele-
ments. In one embodiment, each of the selected computa-
tional pathways may include multiple branches, and is not
necessarily limited to a single branch or loop.

In one embodiment, the computational elements having
path selection logic may switch in response to metadata,
such as a command queue identifier 353 of a job packet
being processed. In one embodiment, for each hash function
supported by the computational engine, the path selection
logic is configured to select a computational pathway that
includes the computational elements for executing the
appropriate sequence of cryptographic operations for imple-
menting the hash function.

In one embodiment, the computational pathways corre-
sponding to different hash functions may overlap; that is,
two different hash functions may include one or more of the
same computational elements in their respective computa-
tional pathways. For example, the K value block may
provide a K value to be used in both of the SHA-1 and
SHA-224/256 modes; thus, the computational pathways for
these modes may both include the K block.

In one embodiment, the hash functions supported by the
computational engine 210-2 may include one or more
National Institute of Standards and Technology (NIST)
approved Secure Hash Algorithm (SHA) functions. For
example, functions supported by the computational engine
210-2 may include SHA-1, SHA-224, SHA-256, and
HMAC functions.

FIG. 4 illustrates the computational engine 210-2 with a
selected computational pathway for implementing a SHA-1
hash function, according to one embodiment. The selected

20

40

45

55

12

computational pathway and the computational elements in
the pathway are illustrated in bold lines in FIG. 4. In one
embodiment, the SHA-1 function is implemented by includ-
ing the context registers HO-H4 and the working registers
A-E in the selected computational pathway. In one embodi-
ment, each of the context registers and working registers
may be a 32 bit register; thus, the five working registers A-E
may be used with the context registers to generate a 160 bit
output digest.

In one embodiment, the computational pathway for
implementing the SHA-1 mode may be selected by the path
selection logic of elements 313, 314, 315, 316, 317, and 318.
The configuration of the path selection logic elements may
determine whether a particular computational element is
included in the selected computational pathway. For
example, multiplexer 314 may be used to include the fl
function block in the computational pathway for use in the
SHA-1 mode while excluding the Maj function block, which
is not used in the SHA-1 mode. Similarly, the multiplexer
315 may include the RL30 block in the computational
pathway for the SHA-1 mode and may exclude it from the
computational pathways for other modes where it is not
used.

FIG. 5 illustrates the computational engine 210-2 with a
selected computational pathway for implementing the SHA-
224 and SHA-256 hash functions, according to one embodi-
ment. The selected computational pathway and the compu-
tational elements in the pathway are illustrated in bold lines
in FIG. 5. In one embodiment, the SHA-224 and SHA-256
functions are implemented by including the context registers
HO-H7 and the working registers A-H in the selected com-
putational pathway. In one embodiment, each of the context
registers and working registers may be a 32 bit register.

In one embodiment, the computational pathway for
implementing the SHA-224 and SHA-256 functions may be
selected by the path selection logic of elements 313, 314,
315, 316, 317, and 318. The configuration of the path
selection logic elements may determine whether a particular
computational element is included in the selected computa-
tional pathway. For example, multiplexer 314 may be used
to include the Maj function block in the computational
pathway for use in the SHA-224 and SHA 256 modes while
excluding the f1 function block, which is not used in these
modes. Similarly, the multiplexer 315 may exclude the
RL30 block from the computational pathway for the SHA-
224 and SHA-256 modes.

FIG. 6 illustrates a computation process 600, according to
an embodiment. In one embodiment, the operations of
process 600 may be performed by a computational engine,
such as computational engine 210-2, to implement a hash
function for generating an output digest from an input
message.

In one embodiment, the process 600 begins at block 601.
At block 601, the computational engine 210-2 may receive
a data packet. In one embodiment, the data packet may be a
job packet that is received and stored in the working
memory, including one or more of registers A-H of the
computational engine 210-2. The data packet may include
both payload data and metadata. In one embodiment, the
payload data may include data from an input message on
which a cryptographic hash is to be performed by the engine
210-2. The metadata in the data packet may include infor-
mation such as a command queue identifier that identifies
one of the command queues 201 from which the data packet
originates, and may also include information indicating the
order in which the output data generated from the data

US 9,438,414 B2

13
packet should be placed in the output data stream. From
block 601, the process 600 continues at block 603.

At block 603, the computational engine 210-2 may select
a context by selecting one of the context data entries 350 for
each context memory register Hk 307, as illustrated in FIG.
3B. In one embodiment, the selected context may include
the selected context data entries for each of the context
memory registers HO-H7. In one embodiment, the context
may be selected based on the command queue identifier 353
of the data packet being processed. For example, with
reference to FIG. 3B, the command queue 1D 353 may be
used to control the context selection logic 351 and 352 to
select one of the context data entries 350 by connecting the
entry with the input 307a and the output 3075 of the context
memory 307 so that data may be stored in and retrieved from
the selected context.

In one embodiment, the context memory may be copied
from the context memory to the working memory. In one
embodiment, the set of context data entries 350 may include
a data entry for each of the command queues 201. For
example, if a command queue identifier 353 identifies com-
mand queue ‘2’, the context selection logic 351 and 352 may
select a corresponding entry 350(2). The context selection
process may thus include selecting the corresponding entry
within each of the context registers HO-H7. In one embodi-
ment, the context may remain selected for the duration of the
execution of the sequence of cryptographic operations;
alternatively, the context may remain selected at least long
enough to transfer the context data into the working
memory. From block 603, the process 600 continues at block
605.

At block 605, the computational engine 210-2 may select
a subset of computational elements in a computational
pathway. In one embodiment, the selection of the subset of
computational elements may depend on the command queue
identifier 353. With reference to FIG. 3B, the command
queue identifier 353 may be transmitted to logic 354, which
generates the appropriate signals for controlling the compu-
tational elements having path selection logic.

In alternative embodiments, the hash function to be used
may be identified based on metadata other than the com-
mand queue identifier 353; for example, the selected hash
function may correspond to a specific command within the
command queue, rather than the command queue itself. In
an alternative embodiment, the cipher mode may be
switched based on timing information or other external
signals that are not transmitted as part of the data packet.

In one embodiment, the computational elements having
path selection logic that are used to select the computational
pathway may include, for example, multiplexers 313, 314,
315, 316, 317, and 318; thus, the logic 354 may identify the
hash function to be executed based on the received com-
mand queue identifier 353, then cause the multiplexers 313,
314, 315, 316, 317, and 318 to couple together the selected
subset of computational elements that will be used to
perform the sequence of cryptographic operations for imple-
menting the identified cipher mode. FIGS. 4 and 5 illustrate
computational pathways that may be selected for imple-
menting the SHA-1 and SHA-224/256 hash functions in the
computational engine 210-2. From block 605, the process
600 continues at block 607.

At block 607, the computational engine 210-2 may ini-
tialize the context memory using a set of initial hash words
Hgo-Ho. In one embodiment, the initialization may occur in
response to the first data packet to be processed for a
particular input message. From block 607, the process 600
continues at block 609.

20

25

30

35

40

45

55

14

At block 609, the after selecting the computational path-
way, the computational engine 210-2 may use the compu-
tational elements in the selected pathway to execute a
sequence of cryptographic operations for generating an
output digest from the input message according to a par-
ticular hash function. In one embodiment, each of the
computational elements in the selected pathway performs
one or more of the cryptographic operations. For example,
the Ch and Maj function blocks are computational elements
used to perform the Ch and Maj functions, respectively,
which include cryptographic operations as defined in FIPS
PUB 180-3.

In one embodiment, the computational elements in the
selected pathway generate intermediate values and eventu-
ally final output data in the working registers by executing
the sequence of cryptographic operations on the input data.
In one embodiment, the input data may be the payload data
of an input data packet, and the final output data may be the
payload data in an output data packet.

During the execution of the sequence of cryptographic
operations at block 609, the computational engine may
generate one or more intermediate values. For example,
execution of a SHA hash function may include repeated
iterations of a particular sequence of cryptographic opera-
tions, with each iteration yielding an intermediate hash value
that may be used in subsequent iterations. In one embodi-
ment, each iteration may be performed on a portion of an
input message, with subsequent iterations performed on
subsequent portions of the input message. From block 609,
the process 600 continues at block 611.

At block 611, for an embodiment where the input message
to be processed is divided into a set of data packets, the
process 600 may determine whether the data packet being
processed is the last data packet of the input message. In one
embodiment where a data packet is processed for each
iteration of the hash function, an intermediate value may be
copied from the working memory to the context memory for
use in a subsequent iteration if the end of the input message
has not been reached, as provided at block 613.

Thus, the computational engine 210-2 may store the
intermediate hash values in a context to be retrieved later for
a subsequent iteration. In one embodiment, the computa-
tional engine 210-2 may store the intermediate hash values
by copying the values from the working memory to the
context memory. In one embodiment, multiple such inter-
mediate values may be stored simultaneously in the context
memory, each in a different context corresponding to a
different command queue.

If, at block 611, the end of the input message has been
reached, then the data in the working memory may be output
in the form of an output data packet, as provided at block
615. The output data packet may then be queued in one of
the output packet buffers 207, as illustrated in FIG. 2, until
it is reassembled with other output data packets into the final
output digest for the input message. From block 613 or block
615, the process 600 may continue back to block 601.

In one embodiment, the processing of a subsequent sec-
ond data packet may include the operations represented by
blocks 601-615. At block 601, the computational engine
210-2 may receive the subsequent data packet, which may
be a job packet from one of the command queues 201. In one
embodiment, the data payload of the subsequent data packet
may be received in the working memory. A context may be
selected for processing the second data packet based on the
command queue identifier of the packet, as provided at block
603. Accordingly, in one embodiment, if the subsequent
second data packet is from a different command queue than

US 9,438,414 B2

15

the previous first packet, a different context may be selected
for processing the second data packet.

In one embodiment, the context selection logic 351 and
352 may select the context by connecting the selected
context to the set of computational elements, so it can be
accessed by the computational elements. In some cases, the
context selected for the second packet may include inter-
mediate hash result values stored prior to the receiving and
processing of the previous packet; these intermediate and/or
final values may have been generated by a prior iteration of
the same or a similar sequence of cryptographic operations
of the same hash function to be used to process the second
data packet. In one embodiment, the context may remain
selected for the duration of the execution of the sequence of
cryptographic operations.

At block 605, a computational pathway may be selected
for processing the second data packet by coupling together
each computational element in a subset of the computational
elements. In one embodiment, the computational pathway
may be selected based on the command queue identifier of
the second packet. In one embodiment, if the hash function
to be used for processing the second data packet is different
from the hash function used to process the first data packet,
then the computational pathways may differ. Otherwise, the
computational pathway selected for the second data packet
may be the same as for the first data packet if the same hash
function is used to process both packets. In one embodiment,
both of the first and second hash functions may be National
Institute of Standards and Technology (NIST) approved
SHA hash functions.

At block 607, a context may be initialized with an initial
hash value including an number of initial hash words, such
as initial hash word 306, for the second data packet. At block
609, the computational elements in the selected pathway
may execute a sequence of cryptographic operations, includ-
ing operations for implementing the selected hash function
for the second data packet. In one embodiment, when the
second data packet is associated with a different hash
function than the first data packet, the computational path-
ways may differ; thus, the sequence of cryptographic opera-
tions performed by the elements in the computational path-
ways may also differ.

The computational elements in the selected pathway may
generate an output data packet based on executing the
sequence of cryptographic operations on the payload data of
the second packet and on the stored context corresponding
to the packet. If the end of the input message has not been
reached, then intermediate hash values generated by this
sequence of cryptographic operations may be stored in the
context memory 307, in accord with blocks 613, so that they
may be used in a subsequent iteration of the hash function;
otherwise, the final hash result data generated from the input
packet is output at block 1115 in the form of an output data
packet.

In one embodiment, the process 600 may repeat blocks
601-615 to process a stream of input data packets, and may
be capable of switching contexts and/or hash function modes
for each sequential data packet that is processed. In one
embodiment, each of multiple input messages may be
divided into a set of input data packets to be received by the
computational engine 210-2. Thus, in the example above,
the first data packet to be processed may contain data from
a first input message and the second subsequent data packet
may contain data from a second different input message. In
one embodiment, over the course of processing the multiple
input messages, the computational engine may select a

10

15

20

25

30

35

40

45

50

55

60

65

16

different computational pathway for each of the different
supported hash functions that are used to process the mul-
tiple input messages.

In one embodiment, for each input message, the process-
ing of the input message to generate the final output digest
may begin when the first data packet for the input message
is received by the computational engine 210-2, and may be
completed when all of the data in the input message has been
received and processed by the computational engine 210-2.
Since the input messages may be divided into job packets
that are independently scheduled, the completion of pro-
cessing for input messages may be in the same order or a
different order than the beginning of processing of the same
input messages.

For example, processing of a first input message to
generate a first output digest that is started either before or
after the start of processing of a second input message to
generate a second output digest may be completed before or
after the second output digest is completed. In other words,
a new input message may be started and finished before an
already pending input message is completed, or the new
input message may be finished after the pending input
message is finished. The computational engine 210-2 may
thus process job packets generated from heterogeneous
workload data, as provided by the workload management
architecture 200.

The embodiments described herein may include various
operations. These operations may be performed by hardware
components, software, firmware, or a combination thereof.
As used herein, the terms “coupled to” or “coupled with”
may mean coupled directly or indirectly through one or
more intervening components. Any of the signals provided
over various buses described herein may be time multi-
plexed with other signals and provided over one or more
common buses. Additionally, the interconnection between
circuit components or blocks may be shown as buses or as
single signal lines. Each of the buses may alternatively be
one or more single signal lines and each of the single signal
lines may alternatively be buses.

Certain embodiments may be implemented as a computer
program product that may include instructions stored on a
non-transitory computer-readable medium. These instruc-
tions may be used to program a general-purpose or special-
purpose processor to perform the described operations. A
computer-readable medium includes any mechanism for
storing or transmitting information in a form (e.g., software,
processing application) readable by a machine (e.g., a com-
puter). The non-transitory computer-readable storage
medium may include, but is not limited to, magnetic storage
medium (e.g., floppy diskette); optical storage medium (e.g.,
CD-ROM); magneto-optical storage medium; read-only
memory (ROM); random-access memory (RAM); erasable
programmable memory (e.g., EPROM and EEPROM); flash
memory, or another type of medium suitable for storing
electronic instructions.

Additionally, some embodiments may be practiced in
distributed computing environments where the computer-
readable medium is stored on and/or executed by more than
one computer system. In addition, the information trans-
ferred between computer systems may either be pulled or
pushed across the transmission medium connecting the
computer systems.

Generally, a data structure representing the computational
engine 210-2 and/or portions thereof carried on the non-
transitory computer-readable medium may be a database or
other data structure which can be read by a program and
used, directly or indirectly, to fabricate the hardware com-

US 9,438,414 B2

17

prising the computational engine 210-2. For example, the
data structure may be a behavioral-level description or
register-transfer level (RTL) description of the hardware
functionality in a high level design language (HDL) such as
Verilog or VHDL. The description may be read by a syn-
thesis tool which may synthesize the description to produce
a netlist comprising a list of gates from a synthesis library.
The netlist comprises a set of gates which also represent the
functionality of the hardware comprising the computational
engine 210-2. The netlist may then be placed and routed to
produce a data set describing geometric shapes to be applied
to masks. The masks may then be used in various semicon-
ductor fabrication steps to produce a semiconductor circuit
or circuits corresponding to the computational engine 210-2.
Alternatively, the database on the non-transitory computer-
readable medium may be the netlist (with or without the
synthesis library) or the data set, as desired, or Graphic Data
System (GDS) II data.

Although the operations of the method(s) herein are
shown and described in a particular order, the order of the
operations of each method may be altered so that certain
operations may be performed in an inverse order or so that
certain operation may be performed, at least in part, con-
currently with other operations. In another embodiment,
instructions or sub-operations of distinct operations may be
in an intermittent and/or alternating manner.

In the foregoing specification, the embodiments have
been described with reference to specific exemplary embodi-
ments thereof. It will, however, be evident that various
modifications and changes may be made thereto without
departing from the broader spirit and scope of the embodi-
ments as set forth in the appended claims. The specification
and drawings are, accordingly, to be regarded in an illus-
trative sense rather than a restrictive sense.

What is claimed is:

1. A hardware computational engine, comprising:

a working memory configured to receive a first input

message and a second input message;

a plurality of switches coupled with the working memory
and configured to transmit to the working memory the
first input message, a first portion of the second input
message, and a second portion of the second input
message independently from the first portion;

a context memory coupled with the working memory,
wherein the context memory is configured to simulta-
neously store a first context corresponding to the first
input message and a second context corresponding to
the second input message; and

a set of hardware computational elements coupled with
the working memory and coupled with the context
memory, wherein the set of hardware computational
elements is configured to finish calculations for gener-
ating a first output digest based on the first input
message and the first context after starting calculations
for generating a second output digest based the second
input message and the second context and before
finishing the calculations for generating the second
output digest.

2. The hardware computational engine of claim 1,
wherein the working memory is configured to receive the
first input message as a first set of input data packets, the first
portion of the second input message as a second set of input
data packets, and the second portion of the second input
message as a third set of input data packets, and wherein the
set of hardware computational elements is further configured
to generate the first output digest by executing a first
sequence of cryptographic operations on the first set of input

10

15

20

25

30

35

40

45

50

55

65

18

data packets, and wherein the set of hardware computational
elements is further configured to generate the second output
digest by executing a second sequence of cryptographic
operations on the second set of input data packets and the
third set of input data packets.

3. The hardware computational engine of claim 2,
wherein the context memory further comprises context
selection logic configured to select the first context during
execution of the first sequence of cryptographic operations
and to select the second context during execution of the
second sequence of cryptographic operations.

4. The hardware computational engine of claim 2,
wherein each of the first set of data packets includes a
command queue identifier that identifies a first command
queue, wherein each of the second set of data packets
includes a command queue identifier that identifies a second
command queue different from the first command queue,
and wherein the context memory is configured to:

select the first context in response to receiving one of the

command queue identifiers that identifies the first com-
mand queue, and

select the second context in response to a receiving one of

the command queue identifiers that identifies the sec-
ond command queue.

5. The hardware computational engine of claim 1,
wherein the first context comprises a first intermediate value
generated by the execution of the first sequence of crypto-
graphic operations, and wherein the second context com-
prises a second intermediate value generated by the execu-
tion of the second sequence of cryptographic operations.

6. The hardware computational engine of claim 1,
wherein each computational element in the set of hardware
computational elements is coupled with at least another
computational element in the set of hardware computational
elements, and wherein each of the hardware computational
elements is configured to execute one or more cryptographic
operations for generating at least one of the first output
digest and the second output digest.

7. The hardware computational engine of claim 1,
wherein one or more of the hardware computational ele-
ments in the set of hardware computational elements com-
prises path selection logic, wherein for each hash function of
a plurality of hash functions supported by the computational
engine, the path selection logic is configured to select a
computational pathway corresponding to the hash function
by coupling together a subset of the hardware computational
elements.

8. The hardware computational engine of claim 7,
wherein the plurality of hash functions supported by the
computational engine includes a first hash function and a
second hash function, and wherein a first computational
pathway corresponding to the first hash function includes at
least one computational element in common with a second
computational pathway corresponding to the second hash
function, wherein the plurality of hash functions supported
by the computational engine includes one or more National
Institute of Standards and Technology (NIST) approved
Secure Hash Algorithm (SHA) functions.

9. A method, comprising:

transmitting to a working memory via a plurality of

switches a first input message;
transmitting to the working memory via the plurality of
switches a first portion of a second input message;

transmitting to the working memory via the plurality of
switches a second portion of the second input message
independently from the first portion;

US 9,438,414 B2

19

simultaneously storing a first context corresponding to the
first input message and a second context corresponding
to the second input message in a context memory; and

finishing calculations for generating a first output digest in
a set of hardware computational elements based on the
first input message and the first context after starting
calculations for generating second output digest based
the second input message and the second context and
before finishing the calculations for generating of the
second output digest in the set of hardware computation
elements.

10. The method of claim 9, wherein transmitting the first
input message further comprises transmitting a first set of
input data packets each including data from the first input
message, wherein transmitting the first portion of the second
input message further comprises transmitting a second set of
input data packets, wherein transmitting the second portion
of the second input message further comprises transmitting
a third set of input data packets, and wherein each of the
second and third sets of input data packets includes data
from the second input message, the method further com-
prising:

generating the first output digest by executing a first

sequence of cryptographic operations on the first set of
input data packets; and

generating the second output digest by executing a second

sequence of cryptographic operations on the second set
of input data packets and on the third set of input data
packets.

11. The method of claim 10, further comprising:

selecting the first context from a plurality of contexts

stored in the context memory in response to receiving
a first command queue identifier from a first input data
packet from the first set of input data packets; and
selecting the second context from the plurality of contexts
stored in the context memory in response to receiving
a second command queue identifier from a second data
packet from the second set of input data packets.

12. The method of claim 9, further comprising:

generating a first intermediate value stored in the first

context based on at least a portion of the first input
message; and

generating a second intermediate value stored in the

second context based on at least a portion of the second
input message.
13. The method of claim 9, further comprising copying
data from a working memory to the context memory.
14. The method of claim 9, further comprising:
generating the first output digest by executing a first
sequence of cryptographic operations for implementing
a first hash function; and

generating the second output digest by executing a second
sequence of cryptographic operations for implementing
a second hash function different from the first hash
function, wherein the first hash function and the second
hash function are National Institute of Standards and
Technology (NIST) approved SHA hash functions.

15. The method of claim 9, further comprising, for each
hash function of a plurality of supported hash functions,
selecting a computational pathway by coupling together
each computational element in a subset of hardware com-
putational elements selected from the set of hardware com-
putational elements.

20

25

30

35

40

45

55

20

16. A system, comprising:

a plurality of command queues each configured to store
one or more commands;

a job packet manager comprising a plurality of switches
coupled with the plurality of command queues; and

a computational engine coupled with the job packet
manager, wherein the job packet manager is configured
to distribute each of a first job packet and a second job
packet to the computational engine, wherein the first
job packet and the second job packet are associated
with different commands, and wherein the computa-
tional engine comprises a set of hardware computa-
tional elements configured to finish calculations for
generating a first output digest based on the first job
packet and a first context after starting calculations for
generating a second output digest based the second job
packet and a second context and before completing the
calculations for generating the second output digest.

17. The system of claim 16, wherein the computational
engine further comprises:

a working memory coupled with the set of hardware
computational elements, wherein the working memory
is configured to receive the first job packet and the
second job packet; and

a context memory coupled with the working memory,
wherein the context memory is configured to simulta-
neously store the first context and the second context.

18. The system of claim 17, wherein the context memory
further comprises context selection logic configured to select
the first context in response to receiving a first command
queue identifier from the first job packet and to select the
second context in response to receiving a second command
queue identifier from the second job packet.

19. The system of claim 16, wherein the set of hardware
computational elements is further configured to generate the
first output digest by executing a first sequence of crypto-
graphic operations on each of a first set of input data packets
including the first job packet, and wherein the set of hard-
ware computational elements is further configured to gen-
erate the second output digest by executing a second
sequence of cryptographic operations on each of a second
set of input data packets including the second job packet,
wherein the first context comprises a first intermediate value
generated by the execution of the first sequence of crypto-
graphic operations, and wherein the second context com-
prises a second intermediate value generated by the execu-
tion of the second sequence of cryptographic operations.

20. The system of claim 16, wherein each of the hardware
computational elements in the set of hardware computa-
tional elements is configured to execute one or more cryp-
tographic operations for generating at least one of the first
output digest and the second output digest, and wherein one
or more of the hardware computational elements in the set
of hardware computational elements comprises path selec-
tion logic, wherein for each hash function of a plurality of
hash functions supported by the computational engine, the
path selection logic is configured to select a computational
pathway corresponding to the hash function by coupling
together a subset of the hardware computational elements.

#* #* #* #* #*

